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LETTER TO THE EDITOR 

Scattering and trapping of positrons at vacancies in solids 

J Dryzek 
Institute of Nuclear Physics, PL-31-342 Krak6w. ulica Radzikowsldego 152, Poland 

Received 28 April 1995 

Abstract. Calculations of the positron trapping efficiency at vacancies and their clusters in the 
transition limit within the optical potential approach are presented. The results are compared 
with the results of the approach based upon Fermi's golden rule repoiied in the l i t e m .  No 
significant differences are found either for metals or semiconductors. The calculations show that 
the elastic scattering of positrons at vacancies and their clusters is more important than trapping. 
The absomtion cnefficients for Dositrons at vacancies and their clusters in aluminium and silicon 
are evaluated. 

The experimental results on the positron lifetime and Doppler broadening of the annihilation 
line spectroscopy used to be explained by the trapping model that gives the rate equations 
for the positron annihilation in the delocalized state (as free positrons) and in the localized 
bound states (as trapped positrons in the vacancy and other open volume defects 11, 21). 
The parameters of the trapping model are the positron lifetimes in free and trapped states 
and the trapping rates which characterize the transition of positrons from the delocalized to 
the localized states. In the trapping model the trapping rate is assumed to be proportional to 
the concentration of the defects which capture positrons. The proportional factor is called 
the specific trapping rate or trapping efficiency related to the cross-section for the trapping 
process. 

The positron lifetimes have been accurately established from experiments and there exist 
also reliable and practical theoretical methods for finding them, e.g. [3,4,5,6]. The situation 
is quite the reverse for the trapping efficiency. In that case the experimental values are only 
poorly estimated. This is related to the uncertainties in the determination of the defect 
concentration and an actual sample often has defects of several kinds. Only in limited cases 
(aluminium [7], silicon [SI) has the dependence of the trapping efficiency on temperature 
been reported. In one case it was also reported that the number of impurity atoms 
sunounding the vacancy has an effect on the trapping efficiency [9]. Nevertheless, within 
the last few years the understanding of the positron trapping process and the theoretical 
estimations of the trapping efficiency have improved. 

In the case of vacancies or small vacancy clusters positron trapping is limited by the 
transition process and the diffusion does not play any important role. The present article is 
a presentation of theoretical calculations of the trapping efficiency in the transition-liited 
process, based on the optical potential associated with the vacancy. 

The first calculations of the positron trapping efficiency for the vacancy in aluminium 
were performed by Hodges [lo] who considered the electron-hole excitation as a possible 
mechanism for the energy transfer in the trapping process. In the calculations he adopted 
Fermi's golden rule. Nevertheless, in his calculations and in the following estimations of the 
positron trapping efficiency done by other authors the positron wave function was used in 
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an approximate way. It led to a weak dependence of the trapping efficiency on temperature, 
or even its complete absence. That was preferable for positron annihilation experiments, 
where all detected changes of positron lifetimes and their intensities could be interpreted as 
a change in the vacancy concentration or in their environment. In the calculations performed 
by McMullen and Stott [ 111 the exact analytic positron wave function, both in a trapped and 
in a free state, was taken into account. This was possible because they modelled the vacancy 
potential by a square well. Following that method Puska and Manninen 1121 and Puska et a1 
[ 131 performed calculations of positron trapping efficiency for vacancies and their clusters 
in aluminium and in silicon, respectively. The calculations exhibited a strong dependence 
of the trapping efficiency on temperature or on the energy of the untrapped positron and its 
resonance behaviour as well. In the calculations based on Fermi’s golden rule it is possible 
to introduce the mechanism of the energy transfer from the positron to the host. In metals 
it seems that the main mechanism is the electron-hole excitation, but in semiconductors 
one can also find another mechanism associated with the phonon creation and the excitation 
of electrons localized at the defect-associated levels. Generally, it is difficult to establish 
all the possible positron energy loss processes which lead to the trapping of positrons into 
the vacancy, because there is still no experimental technique to detect the details of those 
processes. It also seems that the Fermi golden rule (or the Born approximation) is not such 
a good approximation when the incident energy is small in comparison with the potential 
energy, e.g. for thermal positrons interacting with defects in solids. In that case it would 
be interesting to treat the positron trapping process at a vacancy using the optical potential 
approach. At least at the beginning we can consider the phenomenology approach in which 
the imaginary part of the optical potential associated with the vacancy is taken as a parameter. 
This parameter contains all possible energy loss processes. The real part of the potential 
is the real potential felt by the positron in the vicinity of the vacancy. The description of 
the positron trapping process as an absorption of the positron wave function at the complex 
potential associated with the vacancy was first suggested by Shirai and Takamura [14] and 
then developed by Dryzek 1151. The calculations showed that such an approach can be 
very useful in the description of the dependence of the trapping efficiency on temperature. 
The aim of this paper is to show that the optical potential approach produces results similar 
to those of the approach with Fermi’s golden rule, both in metals and in semiconductors. 
Moreover, it points out the fact that the elastic scattering of the positron at the vacancy is 
also significant. 

We adopted the standard formalism of the quantum theory of scattering for description 
of the positron trapping process [16]. In  the case of metals, where the potential originated 
from the vacancy is effectively screened by the conducting electrons, one can assume that 
the vacancy potential is described as a square well: 

where p is an added extraordinary parameter called the absorption coefficient, VO is the real 
potential felt by the positron in the vicinity of a vacancy and i = fl. (We also assumed 
that the absorption coefficient is a constant value; in general the optical potential can be 
energy dependent and nonlocal.) The depth of the potential Vo consists of the term with 
the Coulomb potential (only in the vicinity of the vacancy), the tenns with the electron- 
positron correlation energy and the term coming from the shift of the potential inside the 
vacancy relative to the potential in the perfect host, the so-called ‘zero-shift energy’. In 
many self-consistent calculations the positron binding energy in the vacancy was estimated. 
Knowing the value of that energy one can easily get the value for VO which causes the 
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positron bound state. In our calculations we adopted that method to estimate the value Vo. 
The next step is solving of the Schrodinger equation for the scattering state with the square 
well potential (1). In a potential symmetric about the z axis, the positron wave function in 
the scattering state @ositive energy) has the form: 

where k = Ikl is the positron wave vector, Y d Q )  are the spherical harmonics, ul(r) is the 
solution of the radial Schrodinger equation (I = 0, 1, . . .). It can be evaluated in the form: 

where h: = j ,  =k in! are the Hankel functions, and 

Also, m* is the positron effective mass, cf is a constant and h is the Planck constant divided 
by 2z. For the description of the absorption and the elastic scattering process we need the 
scattering matrix which is defined as follows: 

bi Sl = - = exp(2i81) 
ar 

where & is the phase shift between outgoing and ingoing positron waves. The scattering 
matrix can be easily obtained if we take into account the condition that both the positron 
wave function (3) and its derivative must be continuous at r = R. As a result of this we 
have 

The positron trapping efficiency is associated with the cross-section for the absorption uabs 

as follows: 

where Nor is the atomic density. It was established that 
l,,,, % 2.4kR. 

In the case of thermalized positrons in a solid l,,, is close to unity, so only ‘s’, ‘,p’ andlor 
‘d‘ partial waves are important in (5). The positron is present in the thermalized state 
before the trapping process. This shows that in a real solid we have to average the trapping 
efficiency (5)  with the Boltunann-Maxwell distribution as follows: 

where kB is the Boltzmann constant. In the approach based on the optical potential one can 
immediately obtain a cross-section for the elastic scattering of the positron at the vacancy. 
Let us define the scattering efficiency in a similar way as the trapping efficiency, replacing 
in (5) the cross-section for absorption by the cross-section for the elastic scattering: 
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(Note that we have neglected in the calculations inelastic scattering of the positron; this is 
possible because the energy of the untrapped positron is three orders smaller than the depth 
of the potential.) 

a b l e  1. Posimn binding energy (E&), and parameters of lhc square well of the optical potential 
seen by a positmn at the vacancy and its clusters used in the calculations. 

Type of Eb R vo 
Defect bound state (eV) (A) (ev) p 
vacancy S 2.91 1.582 -9.30 0.047 
Two-vacancy cluster s 4.86 1.990 -9.90 0.024 

P 0.17 
"e-vacancy duster s 5.55 2.279 -9.85 0.12 

P 1.51 
Four-vacancy cluster s 6.21 2.526 -9.90 0.04 

P 2.63 

Figure 1. The napping (a) and scattering (b) efficiency at an aluminium vacancy as a funetion 
of the energy of the unuapped positron. The solid lines are the lotd uapping (5)  and scattering 
(8) efficiency and lhe dashed lines are lhe 's', 'p' and 'd' components. 

We performed the calculations of the trapping and scattering efficiency for positrons 
at vacancies and at their clusters in aluminium. In table 1 one can find the potential 
parameters (Vo, j3 and R )  and the positron binding energies used in the calculations. The 
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binding energies are close to those used by Push  and Manninen [I21 in their calculations. 
This allows one to compare the results obtained in two methods. We can see the calculated 
trapping efficiency (5 )  at a vacancy in aluminium (figure l(a)) as a function of the untrapped 
positron energy (EZk2/2m*) which is almost the same as the dependence obtained by Puska 
and Manninen [I21 by applying Fermi's golden rule (figure 2 in [12]). In our case we 
assumed the absorption coefficient fl  to be equal to 0.047. In both cases resonance of 
the 'p' partial wave at 1.9 eV is predicted. In figure I(b) we can see that the scattering 
efficiency of the positron at the vacancy (8) rapidly decreases when the positron energy 
is falling to zero. Note that the scattering efficiency is within one order higher than the 
trapping efficiency. Doing the calculations of the trapping efficiency for vacancy clusters, 
with the potential parameters presented in table 1, one can obtain almost the same energy 
dependence as was obtained by Puska and Manninen [12] (figure 6 and figure 8 in [12]). 
In the case of the temperature dependence the two sets of results are very similar as well. 
In figure 2 the dependence of trapping (a) and scattering (b) efficiency are presented as a 
function of temperature. (Figure 2(a)) is similar to figure 9 in [12].) For the vacancy and 
the vacancy clusters consisting of three and four vacancies, the trapping efficiency slowly 
increases simultaneously with the increase of temperature. For the divacancy the rapid 
increase is a result of the resonance trapping of positrons at 0.16 eV. For positrons with 
thermal energies we are only able to see a tail of the resonance. For decreasing temperature 
the scattering efficiency decreases both for the vacancies and for their clusters. Still, the 
scattering efficiency is one order higher than the trapping efficiency. This shows that the 
elastic scattering of positrons at the vacancies and their clusters is much more important 
than trapping. At present, there are no direct observations of that phenomenon which could 
support the validity of our calculations. Nevertheless, the development of experiments with 
a positron slow beam where the diffusion of positrons towards the surface of a solid is 
detected could mean that the scattering of positrons at defects could be measured. 

The dependence of the trapping efficiency on temperature is extremely sensitive to the 
potential parameters. In the calculations performed by Puska and Manninen and in our 
calculations presented in figure 2, the potential parameters did not change along with the 
temperature. That assumption is difficult to defend because the temperature influences the 
crystal host causing, e.g., the lattice expansion. The depth of the square well VO does not 
depend on the temperature. But we can assume that the defect radius R is a linear function 
of temperature: R(T)  = R ( l  + UT), where U is a linear coefficient. If we take as U the 
linear expansion coefficient for aluminium and the calculations of the trapping efficiency 
as a function of temperature (7) are again performed, we get the dependence presented in 
figure 3(a). Now the resonance dependence of the trapping efficiency on the divacancy 
is much more visible. In the case of the positron annihilation it was established that 
e.g. the positron lifetime in bulk increases with temperature linearly but faster than lattice 
expansion. For aluminium the linear coefficient for the positron bulk lifetime is equal to 
1.7 x K-] (in [17]). In figure 3(b) we can see the dependence of the trapping efficiency 
on temperature assuming that value as U. The resonance trapping for the divacancy at 200 K 
and the fast increase of trapping efficiency for the vacancy and the vacancy clusters with 
temperature is now obtained. In the literature that rapid increase of the annihilation line 
shape parameter (S parameter) with temperature for aluminium and aluminium alloys was 
reported [I81 at temperatures close to the melting point. Probably these increases in the 
vacancy saturation region are the result of the strong dependence of the positron trapping 
efficiency on temperature, e.g. presented in figure 3(b). The resonance behaviour of the 
positron's trapping efficiency at the divacancy results from changing of its radius. 

As was mentioned, in the literature there have been reported different values for the 
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Figure 2 The tempemhire dependence of the posivon tnpping (a) and xanering (b) efficiency 
1 the vacancy (IV) and its clusters consisting of lwo (Zv), tbm (3V) and four (4V) vacancies 
in duminium. (No thermal expansion of the lanice was assumed.) 

binding energy of a positron in the vacancy, e.g. in the aluminium. We accepted the value 
-2.3 eV in order to compare our results with the results obtained in [12]. Nevertheless, 
the two-component self-consistent calculations performed by Bororiski and Nieminen [ 191 
gave another value of binding energy in the aluminium vacancy which equals -1.59 eV. 
Modelling their calculations of the vacancy potential by the square well we obtain the depth 
Vo which equals -7.865 eV (which gives the same value of the positron binding energy). 
From the experiment we know that the positron trapping efficiency for the vacancy in 
aluminium is equal to 5.7 x lOl4 s-l (from [17]). From (7) it is easy to deduce that 
the complex potential for that case equals -7.865(1 + 0.026i) eV. Figure 4(a) presents 
the calculated temperature dependence of the trapping efficiency assuming a condition 
that there is no thermal expansion of the lattice (ol = 0), ol = 2.6 x W5 K-' and 
ol = 1.7 x lo4 K'. However, total changes of the trapping efficiency presented in 
figure 4(a) are within 2 x loi4 s-' which is too small for detecting details of the predicted 
dependence from the actual positron measurement techniques. Thus, from the experimental 
point of view for the single vacancy in aluminium the trapping efficiency is a constant for the 
temperature up to the melting point. Certainly that conclusion is valid for the self-consistent 
calculations done by Boroiujki and Nieminen [19]. Figure 4(b) presents the dependence of 
the scattering efficiency in that case. 

The examples presented above show that the optical potential approach works well in 
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Figure 3. The temperature dependence of the positron trapping efficiency at the vacancy (1V) 
and its dusten consisting of WO (ZV), three (3V) and four (4V) vacancies in aluminium. The 
calculations were performed assuming thermal expansion of the lattice With the linear coefficient 
equal to 01 = 2.6 x K-' (a) and M = 1.7 x K-l (b). 

the case of metals. However, one can show that also in the case of semiconductors that 
approach produces the results close to results obtained by Puska et ai [131 where Fermi's 
golden rule was used. In the case of semiconductors the potential which originates from 
the vacancy and is felt by positrons is not screened by the conduction electrons. Only for 
neutral vacancies can one assume the potential felt by positrons in their vicinity to be the 
square well potential (1). The charged vacancies are surrounded by an additional Coulomb 
potential which is extended over the host. As was shown by Rodriquez et al [20] and as 
was applied by Pnska eral [13] the potential sensed by the positron at charged vacancies 
in silicon is as follows: 

where the absorption coef6cients were added to OUT calculations and €0 is the 
static dielectric constant. The scattering mamx and the phase shift for that potential are 
given by 

and 
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Figure 4. The tempemure dependence of the trapping (a) and scattering @) efficiency for the 
potential equd to -7.865(1 + 0.024i) eV which modelled the potential obtained in the No- 
component self-consistent calculations perfomed by Borohski and Niemhen 1191. The three 
values of the linear mefficient of the lattice marked in the Bgure wcre assumed. 

F i y R  5. The trapping efficiency for negatively charged and neutral vacancies in silicon; the 
values of the potential parameteen are described in the text. 

where 



k1,z = JW*F~) [E  - V1.A + @1,~)1. H,%. r, n / k )  = h(k, r , n / k )  * igI(k, r, n / k )  (h 
and gl are regular and irregular Coulomb functions), n = sign(V~)eZm'/(h2c~) and e is 
the electron charge (the prime denotes the derivative with respect to the radial distance r 
for Coulomb functions and with respect to the argument of the Hankel functions). The 
following values of the potential parameters were taken in our calculations: V, = -3.6 eV, 
RZ = 2.540.& (for the neutral, singly and doubly negative vacancy), VI = -0.1, -0.2 eV, 
R1 = 7.1968A (for the singly and doubly negative vacancy, respectively) and €0 = 11.7, 
which are the same as in [13]. Taking @I = 0.047 and ,& = 0.03 for the singly negative 
vacancy, @I = 0.0235 and @z = 0.03 for the doubly negative vacancy and @Z = 0.025 
for the neutral vacancy we get the temperature dependence of the trapping efficiency 
(7) for the negatively charged and neutral vacancy in silicon presented in figure 5. The 
dependences obtained are very close to those obtained by Push  etal[13] (figure 7 in 1131). 
One can also achieve a good agreement between the calculation performed by Puska et al 
1131 and the calculations based on the optical model for a positive vacancy. Jn this case 
V, = 0.1(1 - 0.12) eV and Vz = -3.6(1 + 0.12i) eV must be taken in the calculations of 
trapping efficiency. The calculations show that in semiconductors the optical potential can 
also be applied successfully to the description of the positron trapping process also at the 
charged vacancies. 

Summing up one can point out that the positron trapping efficiency at the vacancies 
and their clusters is a function of the untrapped positron's energy or of temperature. The 
methods of calculation of the trapping efficiency based on the Fermi golden rule and on the 
optical potential generally produce very close results both in metals and in semiconductors. 
However, the calculations based on the optical potential indicated that the process of elastic 
scattering of positrons on the vacancy and its clusters is much more efficient than the 
process of trapping. The optical potential allows us also to introduce the spatial localization 
of the positron loss energy process which will be examined more carefully in our further 
calculations. At present the experimental documentation on the trapping rate and the 
trapping efficiency is still poor, and the evaluation of the results of calculations is rather 
qualitative. 

The author would l i e  to thank the Committee of Scientific Research for supporting this 
work under the research grant No 2 P302 028 04. 
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